NEXTW

Description

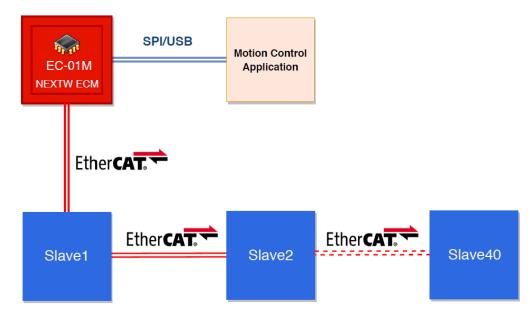
EC-01M is an EtherCAT Master controller developed by NEXTW Technology Company. Host chips or devices can communicate with EC-01M by SPI or USB interface. EC-01M provides an easy way to migrate the EtherCAT master functions to the precise motion control applications.

Feature

EtherCAT

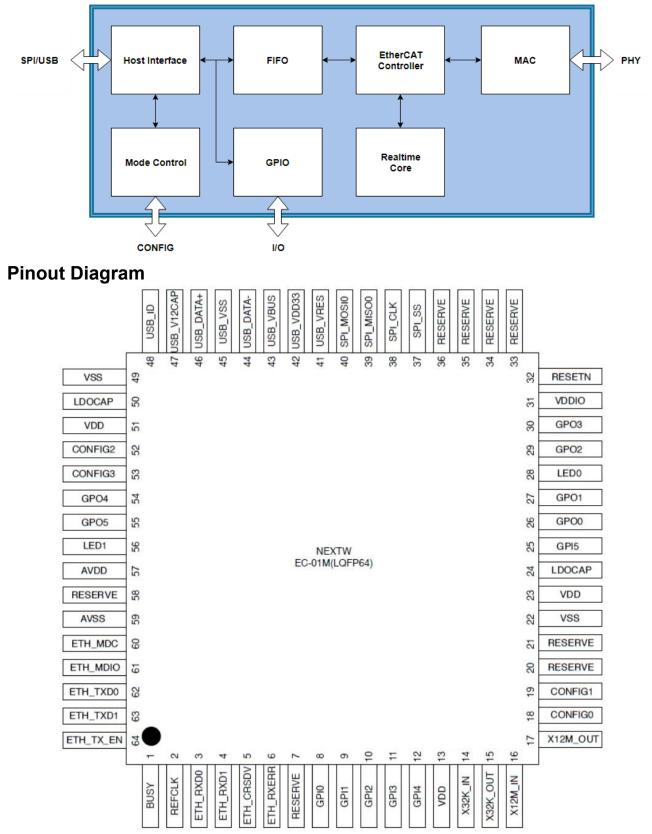
- Supports maximum 40 EtherCAT Slaves*
- Supports minimum 0.25ms DC cycle time
- Supports DCM Master Shift mode <u>Ethernet MAC Controller</u>
- 100 Mbps data transmission
- Supports RMII interface

SPI Interface


- Supports full duplex slave mode
- MSB first transfer fashion
- Clock frequency up to 24 MHz USB Interface
- USB 2.0 with on-chip transceiver
- Implements USB HID class
- <u>GPIO</u>
 - 6 general purpose TTL inputs
- 6 general purpose push-pull outputs <u>Temperature</u>
- Operating Temperature -40°C ~ +105°C

Application

PLC / CNC Robot Automation


*Standard CANopen over EtherCAT(CoE) servo drives, NEXTW EtherCAT slaves. (Refer the support list)

Typical Applications Diagram

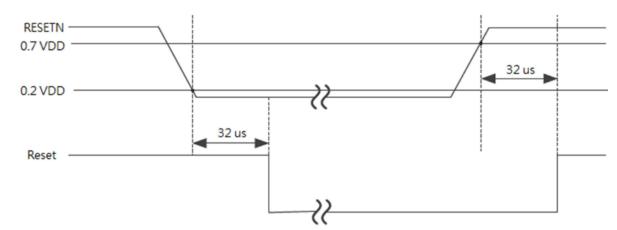
Block Diagram

EtherCAT Master Controller

Signal Description

	la Description		
Pin	Name	Туре	Description
1	BUSY	0	System busy indicator pin.
2	REFCLK		EMAC RMII reference clock input pin.
3	ETH_RXD0		EMAC RMII receive data bus bit 0.
4	ETH_RXD1		EMAC RMII receive data bus bit 1.
5	ETH_CRSDV		EMAC RMII carrier sense/receive data input pin.
6	ETH_RXERR		EMAC RMII receive data error input pin.
7	RESERVE		
8	GPI0		General purpose digital input pin0.
9	GPI1		General purpose digital input pin1.
10	GPI2		General purpose digital input pin2.
11	GPI3		General purpose digital input pin3.
12	GPI4		General purpose digital input pin4.
13	VDD	Р	Power supply for I/O ports and LDO source for
			internal PLL and digital circuit.
14	X32K_IN		External 32.768 kHz crystal input pin.
15	X32K_OUT	0	External 32.768 kHz crystal output pin.
16	X12M_IN	I	External 12 MHz crystal input pin.
17	X12M_OUT	0	External 12 MHz crystal output pin.
18	CONFIG0		Configuration pin 0.
19	CONFIG1		Configuration pin 1.
20	RESERVE		
21	RESERVE		
22	VSS	Р	Ground pin for digital circuit.
23	VDD	Р	Power supply for I/O ports and LDO source for
		-	internal PLL and digital circuit.
24	LDOCAP0	Р	LDO output pin.
25	GPI5		General purpose digital input pin5.
26	GPO0	0	General purpose digital output pin0.
27	GPO1	0	General purpose digital output pin1.
28	LED0	0	LED output pin0.
29	GPO2	0	General purpose digital output pin2.
30	GPO3	0	General purpose digital output pin3.
31	VDDIO	Р	Power supply for I/O ports
Pin	Name	Туре	Description
32	RESETN	I	External reset input: active LOW, with an internal
22			pull-up. Set this pin low reset to initial state.
33	RESERVE		
34	RESERVE		
35	RESERVE		
36	RESERVE		
37	SPI_SS		SPI slave select pin.

EtherCAT Master Controller


38	SPI_CLK		SPI serial clock pin.
39	SPI_MISO	0	SPI MISO (Master In, Slave Out) pin.
40	SPI_MOSI		SPI MOSI (Master Out, Slave In) pin.
41	USB_VRES	Α	USB module reference resister
42	USB_VDD33	Р	Power supply for USB
43	USB_VBUS	Р	USB power supply from USB host or HUB.
44	USB_D-	Α	USB differential signal D
45	USB_VSS	Р	Ground pin for USB.
46	USB_D+	А	USB differential signal D+.
	HSUSB_VDD12_CAP		USB Internal power regulator output 1.2V decoupling
47		Р	pin.
/			Note: This pin needs to be connected with a 1uF
			capacitor.
48	USB_ID		USB identification.
49	VSS	Р	Ground pin for digital circuit.
50	LDO_CAP	Р	LDO output pin.
51	VDD	Р	Power supply for I/O ports and LDO source for
		· ·	internal PLL and digital circuit.
52	CONFIG2		Configuration pin 2.
53	CONFIG3		Configuration pin 3.
54	GPO4	0	General purpose digital output pin4.
55	GPO5	0	General purpose digital output pin5.
56	LED1	0	LED output pin1.
57	AVDD	Р	Power supply for internal analog circuit.
58	RESERVE		
59	AVSS	Р	Ground pin for analog circuit.
Pin	Name	Туре	Description
60	ETH_MDC	0	EMAC RMII PHY Management Clock output pin.
61	ETH_MDIO	I/O	EMAC RMII PHY Management Data pin.
62	ETH_TXD0	0	EMAC RMII Transmit Data bus bit 0.
63	ETH_TXD1	0	EMAC RMII Transmit Data bus bit 1.
64	ETH TX EN	0	EMAC RMII Transmit Enable output pin.

FUNCTIONAL DESCRIPTION

<u>Reset</u>

A reset signal by pulling low RESETN pin can be used to reset system at any time. When the RESETN voltage is lower than 0.2VDD and the state keeps longer than 32 us, the EC-01M will be reset. It will be in reset state until the RESETN voltage rises above 0.7VDD and the state keeps longer than 32 us.

<u>BUSY</u>

While EC-01M is initializing or handling the data over the SPI interface, the level of BUSY pin will be HIGH. Host should **NOT** do SPI data exchanging while the BUSY pin outputs HIGH.

CONFIG[0:3]

EC-01M has four configuration pins as follows.

Name	Function
CONFIG0	Host interface selection
CONFIG1	Test mode enable
CONFIG2	PDO size selection
CONFIG3	FIFO abandon enable

When the CONFIG0 is set to LOW, the USB will be available for host interface. When the CONFIG0 is set to HIGH, the SPI will be the host interface.

CONFIG0	L	Host interface is set as USB
	Х	Host interface is set as SPI (Default)
	Н	riust interface is set as SFI (Delauit)

X: Floating, L: Low, H: High

When the CONFIG1 is set to HIGH, EC-01M enter test mode. If NEXTW 16-ch digital inputs and 16-ch digital outputs slaves are connected with EC-01M, the slaves will enter operational state automatically. All output LEDs will light for 2 seconds, and then the output LEDs will be blinking sequentially. If the users set the values for the outputs by the host interface, the digital output LEDs will stop blinking and will be set to the values which users assign.

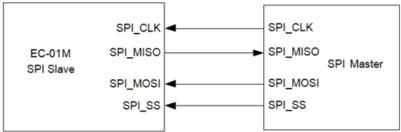
CONFIG1	X	- Normal mode (Default)	
	н	Test mode	
V. Electing	I: Low H: High		

X: Floating, L: Low, H: High

When the CONFIG2 is set to LOW, the data size of each slave will be 12 Bytes. When the CONFIG2 is set to HIGH, the data size of each slave will be 16 Bytes.

	Х	Data size of each slave is 12 Bytes
CONFIG2	L	(Default)
	Н	Data size of each slave is 16 Bytes

X: Floating, L: Low, H: High

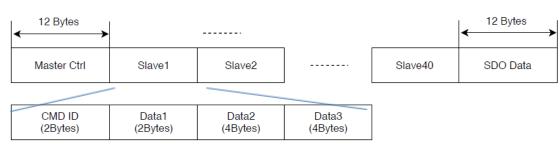

When the CONFIG3 is set to LOW, the BUSY pin will be HIGH to wait the complete data exchanging finished. When the CONFIG3 is set to HIGH, the commands in the FIFO will be abandoned if the data do not received completely by EC-01M in the 100 EtherCAT communication cycle time.

		FIFO abandon disable
CONFIG3	Х	FIFO abandon enable (Default)
	Н	

X: Floating, L: Low, H: High

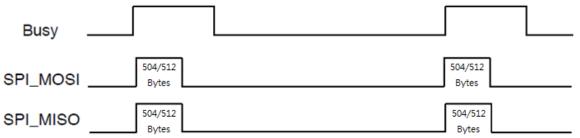
<u>SPI</u>

EC-01M supports full duplex transfer in the slave mode with the 4-wire bi-direction interface.



EC-01M transmits/receives data with the most-significant bit (MSB) first. The edge of SPI clock to transmit/receive is shown below.

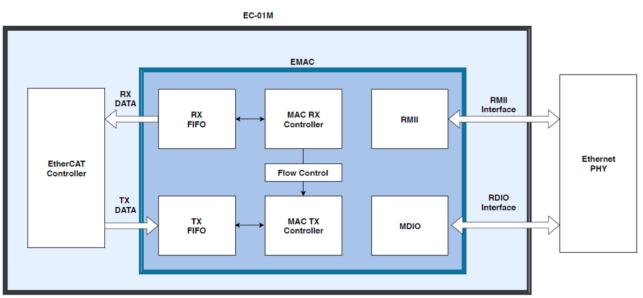
Complete SPI transmit/receive data should be 504 or 512 bytes depend on CONFIG2 pin. The data size of SPI transmit/receive for each slave will be 12 bytes if the CONFIG2 pin has pull-low, and the maximum 40 slaves will be control.



The data size of SPI transmit/receive for each slave will be 16 bytes if the CONFIG2 pin has pull-high, and the maximum 30 slaves will be control. For the detail definition of the data, please refer to the "ECM-SK Quick Start Guide"

The busy pin is HIGH while SPI data is exchanging. The next data exchange will be accepted while the busy pin is LOW. While the CONFIG3 pin has pull-high, the commands in the FIFO will be abandoned if the complete data do not be exchanged in the 100 EtherCAT communication cycle time. After abandoning the incompletely data, the following data transfer can work normally.

<u>USB</u>


The Interrupt IN and the Interrupt OUT with the fixed 512 bytes packet size are supported for the USB communication. If the CONFIG2 pin has pull-low, only the front 504 bytes are useful. The data structure is same as the SPI communication. For the detailed operation of the USB Human Interface Device (HID) of NEXTW EC-01M, please refer to the "ECM-SK Quick Start Guide"

Ethernet MAC Controller

The EMAC controller of EC-01M supports Reduced MII (RMII) interface to connect with external Ethernet PHY and provides TX/RX data transfer to the EtherCAT controller internally.

NEXTW

EC-01M EtherCAT Master Controller

EtherCAT

EC-01M provides fixed PDO mappings for the EtherCAT CoE servo drives, the EtherCAT 16-ch digital input and 16-ch digital output slaves, and the NEXTW HSP slaves. Users can access PDO data through the host interface.

The RxPDO and the TxPDO for the EtherCAT 16-ch digital inputs and 16-ch digital outputs slave are defined as follows

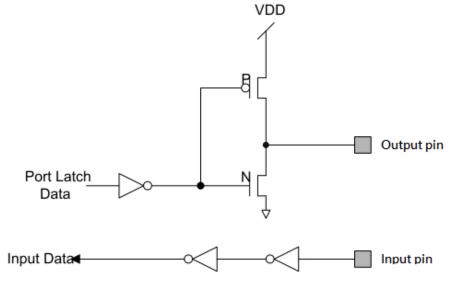
The RxPDOs and the TxPDO in CSP, CSV, and CST mode for the EtherCAT CoE servo drives show as follows.

CSP(Cyclic Sync Position)

RxPDO	Controlword (6040h/2bytes)	Target Position (607Ah/4bytes)		
CSV(Cyclic Sync	Velocity)			
RxPDO Controlword (6040h/2bytes)		Target Velocity (60FFh/4bytes)		
CST(Cyclic Sync	CST(Cyclic Sync Torque)			
RxPDO Controlword (6040h/2bytes)		Target Torque (6071h/2bytes)		
CSP&CSV&CST				
TxPDO	Statusword (6041h/2bytes)	Position Actual Value (6064h/4bytes)	Torque Actual Value (6077h/2bytes)	Error Code (603Fh/2bytes)

The RxPDOs and the TxPDO in CSP and CSV mode for the NEXTW HSP slaves are as follows.

CSP(Cyclic Sync	Position)						
RxPDO	Controlword	Target Position	Digital Outputs	Controlword	Target Position	Digital Outputs	
	(6040h/2bytes)	(607Ah/4bytes)	(60FEh/4bytes)	(6840h/2bytes)	(687Ah/4bytes)	(68FEh/4bytes)	
CSV(Cyclic Sync	CSV(Cyclic Sync Velocity)						
RxPDO	Controlword	Target Velocity	Digital Outputs	Controlword	Target Position	Digital Outputs	
	(6040h/2bytes)	(60FFh/4bytes)	(60FEh/4bytes)	(6840h/2bytes)	(68FFh/4bytes)	(68FEh/4bytes)	
CSP&CSV							
TxPDO	Statusword	Position Actual Value	Digital Inputs	Statusword	Position Actual Value	Digital Inputs	
	(6041h/2bytes)	(6064h/4bytes)	(60FDh/4bytes)	(6841h/2bytes)	(6864h/4bytes)	(68FDh/4bytes)	

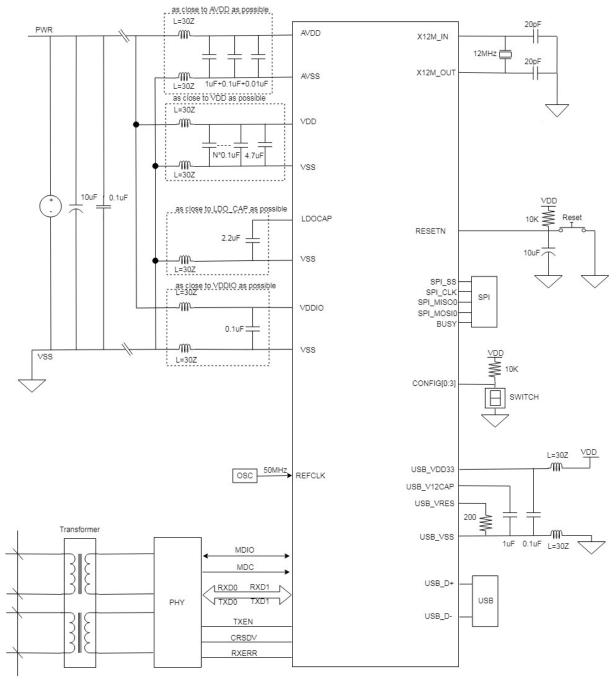

The RxPDOs and the TxPDO in CSP and CSV mode for the Stepping motor slaves (no torque related PDO) are as follows.

CSP(Cyclic Sync Position)

RxPDO	Controlword (6040h/2bytes)	Target Position (607Ah/4bytes)				
CSV(Cyclic Sync	CSV(Cyclic Sync Velocity)					
RxPDO	Controlword (6040h/2bytes)	Target Velocity (60FFh/4bytes)				
CSP&CSV&CST						
TxPDO	Statusword (6041h/2bytes)	Position Actual Value (6064h/4bytes)				

<u>GPIO</u>

EC-01M has 6 general purpose push-pull output pins. Users can control the LOW or HIGH level outputs by the host interface. EC-01M also has 6 general purpose TTL input pins with high impendence. When input signals are LOW or HIGH level, users can get the values through the host interface


LED Indicator

The LED Indicators can show the state of EtherCAT slaves	S.
--	----

	-	
	L	Slaves are not in Safe-Operational state
LED0	Н	Slaves are in Safe-Operational state
	L	Slaves are not in Operational state
LED1	Н	Slaves are in Operational state

L: Low, H: High

APPLICATION CIRCUIT

ELECTRICAL CHARACTERISTICS Voltage Characteristics

SYMBOL	PARAMETER MIN TYP MAX				UNIT
VDD	Operation voltage	1.8 3.3 3.6			
AVDD	Analog operation voltage	VDD		V	
VDDIO	Power supply for GPIO	1.8	3.3	3.6	v
LDO_CAP	LDO output voltage	1.08	1.2	1.32	

Current Characteristics

SYMBOL	PARAMETER	MIN	MAX	UNIT
IDD	Maximum current into VDD		200	
IDDIO	Maximum current into VDDIO		100	mA
ISS	Maximum current out of VSS		100	

PIN DC Characteristics

<u>GPIO</u>

PARAMETER	MIN	TYP	MAX	UNIT	Test Conditions
Input Low voltage			0.8	V	VDD = VDDIO = 3.6 V
Input High voltage	2			V	VDD = VDDIO = 3.6 V
Output source current		-18		mA	VDD = VDDIO = 3.3 V
Output sink current		17		mA	VDD = VDDIO = 3.3 V

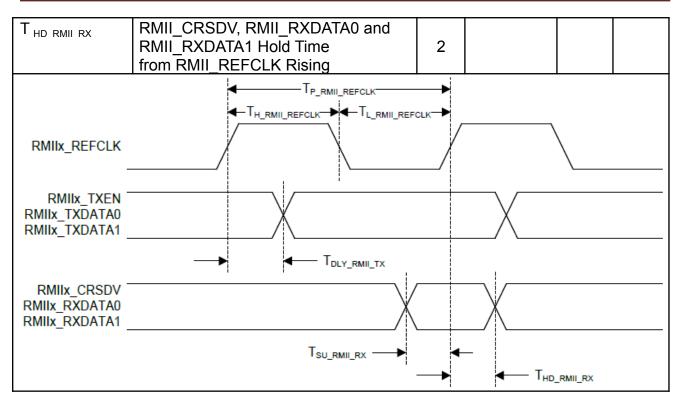
<u>RESETN</u>

PARAMETER	MIN	TYP	MAX	UNIT	Test Conditions
Negative going threshold (Schmitt input),			0.3 VDD	V	VDD = 3.3V
Positive going threshold (Schmitt Input)	0.7 VDD				VDD = 3.3V
Internal RESETN input filtered time pin pull up resistor		50		ΚΩ	
RESETN input filtered time		32		us	

SPI Dynamic Characteristics

SYMBOL	PARAMETER	MIN	TYP	MAX	UNIT
t _{clkH}	Clock output High time			T _{SPICLK} /2	
t _{CLkL}	Clock output Low time			T _{SPICLK} /2	
T _{ss}	Slave select setup time	T _{SPICLK} x 2			
Т _{SH}	Slave select hold time	T _{SPICLK}			ns
T _{DS}	Data input setup time	0			
T _{DH}	Data input hold time	2			
T _v	Data output valid time			8	
SPI SS SPI Clock SPI data outp (SPI_MISO SPI data inpu (SPI_MOSI) Data Valid	Data Valid			

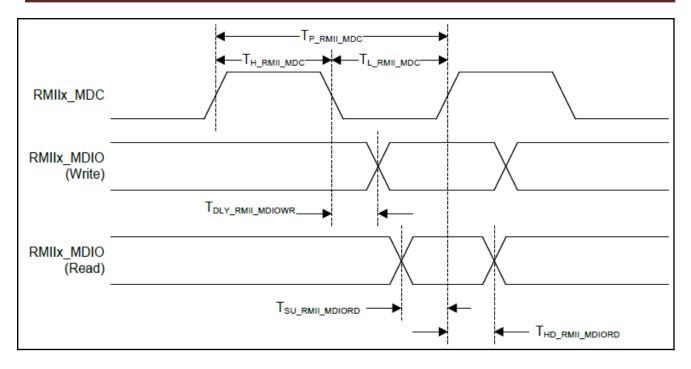
USB Characteristics


PARAMETER	MIN	TYP	MAX	UNIT	Test Conditions
Input Low voltage			0.8	V	VDD = VDDIO = 3.6 V
Input High voltage	2			V	VDD = VDDIO = 3.6 V
Output source current		-18		mA	VDD = VDDIO = 3.3 V

RMII Interface Timing

SYMBOL	PARAMETER	MIN	TYP	MAX	UNIT
T _{P RMII REFCLK}	RMII_REFCLK Period		20.0 +/- 50 ppm		
T _{H RMII REFCLK}	RMII_REFCLK High Time	8.0	10.0	12.0	
T _{L RMII REFCLK}	RMII REFCLK Low Time	8.0	10.0	12.0	
T dly rmii tx	RMII_REFCLK Rising to Valid RMII_TXEN, RMII_TXDATA0 and RMII_TXDATA1 Delay			10	ns
T _{su rmii rx}	RMII_CRSDV, RMII_RXDATA0 and RMII_RXDATA1 Setup Time to RMII_REFCLK Rising	5			

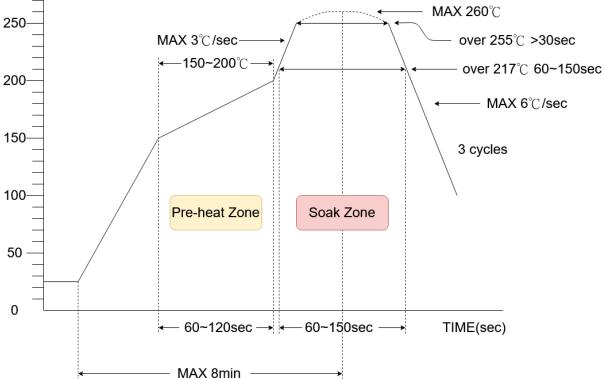
EtherCAT Master Controller



Ethernet PHY Management Interface Timing

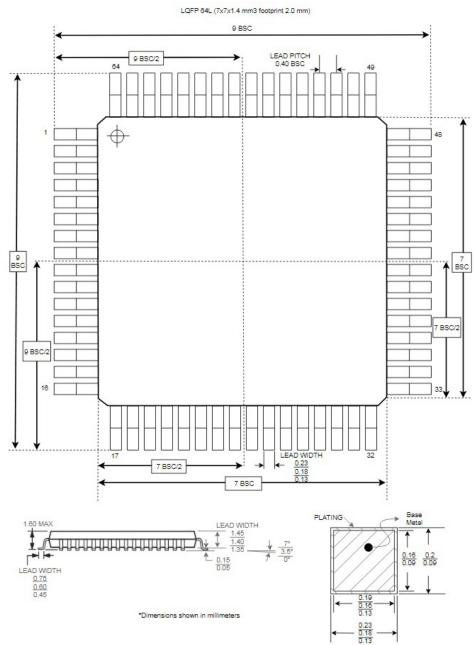
SYMBOL	PARAMETER	MIN	TYP	MAX	UNIT
T _{P RMII MDC}	RMII_MDC Period	MDC Period 400			
T _{H RMII MDC}	RMII_MDC High Time	200			
T _{L RMII MDC}	RMII_MDC Low Time	RMII_MDC Low Time 200			
T dly rmii mdiowr	RMII_MDC Falling to Valid RMII_MDIO Delay			10	ns
T _{SU RMII} MDIORD	RMII_MDIO Setup Time to RMII_MDC Rising	10			
T HD RMII MDIORD	RMII_MDIO Hold Time from RMII_MDC Rising	10			

NEXTW


EC-01M EtherCAT Master Controller

Recommendable Reflow Soldering Profile

TEMPERATURE(℃) 300 250 MAX 3℃/sec-



Pb Free Package
3°C/sec. max
60 sec. to 120 sec.
60 sec. to 150 sec.
> 30 sec.
260°C
6°C/sec. max
8 min. max

* According to J-STD-020C

Package Dimensions

EtherCAT Master Controller

REVISION HISTORY

Data	Revision	Description
2019.04.23	1.00	First release
2020.01.30	1.10	Add stepping motor slaves description
2020.04.15	1.20	Add reflow soldering profile
2020.12.08	1.30	Modify application circuit and PIN13 definition
2021.05.14	1.40	Modify Tss Characteristic
2021.09.28	1.50	Modify Pinout Diagram.